Write your name here Surname	Other name	es
Pearson Edexcel Level 3 GCE	Centre Number	Candidate Number
Mathemat Advanced Paper 1: Pure Mathe		
Wednesday 6 June 2018 – I Time: 2 hours	Morning	Paper Reference 9MA0/01
You must have: Mathematical Formulae and Sta	atistical Tables, calculator	Total Marks

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 14 questions in this question paper. The total mark for this paper is 100.
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end

Turn over ▶

P58348A
©2018 Pearson Education Ltd.
1/1/1/1/1/

Answer ALL questions. Write your answers in the spaces provided.

1.	Given that θ is small and is measured in radians, use the small angle approximations to find an
	approximate value of

$$\frac{1 - \cos 4\theta}{2\theta \sin 3\theta}$$

(3)

1		è	ø	ø
4	Ş	í		ċ
٠	i	i		ì
4	Ŀ		Ŀ	
Ġ	ä		Ξ	ā
1	c		c	
3	7		₹	3
ì	ø	ø		•
ě	9	٩	ě	٩
4	r	ı	ρ	١
1	b	ø		Ą
ì		ė		Ė
ì	ŧ	ė	×	ė
٠			L	
		7	-	7
ł	Ŀ		÷	
ı	F			
١.				_
111	7		7	,
1		í	÷	ė
4	ė	i	ė	i
ł	٢	ì		
1	b	d	b	ē
1	L			
1	۲	•	-	•
ŝ	i	i	ė	i
d	à	6	ä	á
J	E	1	Ľ	
1	5	3	-	
ï	2	ä	7	P
1	٩	۹	3	ú
J	P	7	-	
,	ï			
J	þ	ij		ą
ŀ	L		ú	ı
j	۲	•	7	
٩	ŧ	ė	ø	P
٦	ė	í	ė	i
Ġ	á	ė	9	-
į	=	ę	-	ę
	ż		Ŀ	
Ì	۴	•	9	Ñ
٩	b	i	d	ø
	â	i	ś	ċ
i	r		7	
Į	b	Ę		ģ

Question 1 continued	
(Total for Question 1 is 3 marks)	

2. A curve *C* has equation

$$y = x^2 - 2x - 24\sqrt{x}, \qquad x > 0$$

- (a) Find (i) $\frac{dy}{dx}$
 - (ii) $\frac{d^2y}{dx^2}$

(3)

(b) Verify that C has a stationary point when x = 4

(2)

(c) Determine the nature of this stationary point, giving a reason for your answer.

(2)

		L	ì	á
4		3	ľ	
	T	7	۹	9
1	Ŀ		ı	
č	Ξ	=	Ī	
1	c		2	1
ľ		7	3	
Ì	É	5	ľ	
	7	٦	7	۹
ì	r	'n		ċ
1	Ы	ı	ï	
ì	ï	è	i	i
ì	ė	ò	i	á
	_			
į	7			7
ł	þ		ė	
ŀ	۰			
3	ė	4	ģ	i
4	ď		-	
Ġ	Ξ	Ξ	Ξ	Ξ
1	٢	ı		Ī
1	b	ē		9
1	L	-		
1	Г			
1	7			
1	۳	١	۴	۰
į	=			
	Ξ		3	þ
1	9	S	ś	i
J	۹	7	7	
1	Ĺ			
ł	۴	7		ę
	è	M	ή	k
1	2		í	j
Ļ	-	Ξ	2	
Ċ	ž	ä	þ	9
į		Ŧ		ę
	ż	_	٠	
Ì	r	7	7	
٦	٩	ė	ø	P
1	ρ	Ħ	٩	Ĺ
1	L	÷		
		٠		

Question 2 continued	
(Total for Question 2 is 7 max	rks)

(4)

3.

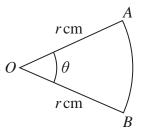


Figure 1

The angle AOB is θ radians. The area of the sector AOB is $11 \, \mathrm{cm}^2$

Given that the perimeter	of the sector	is 4 times	the length	of the are	c AB, find	I the exact
value of r.						

Question 3 continued
(Total for Question 3 is 4 marks)

- **4.** The curve with equation $y = 2\ln(8 x)$ meets the line y = x at a single point, $x = \alpha$.
 - (a) Show that $3 < \alpha < 4$

(2)

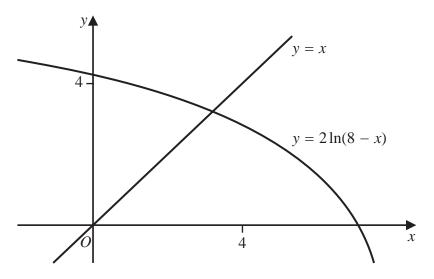


Figure 2

Figure 2 shows the graph of $y = 2\ln(8 - x)$ and the graph of y = x.

A student uses the iteration formula

$$x_{n+1} = 2\ln(8 - x_n), \quad n \in \mathbb{N}$$

in an attempt to find an approximation for α .

Using the graph and starting with $x_1 = 4$

(b) determine whether or not this iteration formula can be used to find an approximation for α , justifying your answer.

(2)

		L	ì	á
4		3	ľ	
	T	7	۹	9
1	Ŀ		ı	
č	Ξ	=	Ī	
1	c		2	1
ľ		7	3	
Ì	É	5	ľ	
	7	٦	7	۹
ì	r	'n		ċ
1	Ы	ı	ï	
ì	ï	è	i	i
ì	ė	ò	i	á
	_			
į	7			7
ł	þ		ė	
ŀ	۰			
3	ė	4	ģ	i
4	ď		-	
Ġ	Ξ	Ξ	Ξ	Ξ
1	٢	ı		Ī
1	b	ē		9
1	L	-		
1	Г			
1	7			
1	۳	١	۴	۰
į	=			
	Ξ		3	þ
1	9	S	ś	i
J	۹	7	7	
1	Ĺ			
ł	۴	7		ę
	è	M	ή	k
1	2		í	j
Ļ	-	Ξ	2	
Ċ	ž	ä	þ	9
į		Ŧ		ę
	ż	_	٠	
Ì	r	7	7	
٦	٩	ė	ø	P
1	ρ	Ħ	٩	Ĺ
1	L	÷		
		٠		

Question 4 continued	
	(Total for Question 4 is 4 marks)

5. Given that

$$y = \frac{3\sin\theta}{2\sin\theta + 2\cos\theta} \qquad -\frac{\pi}{4} < \theta < \frac{3\pi}{4}$$

show that

$$\frac{\mathrm{d}y}{\mathrm{d}} = \frac{A}{1+\sin 2} \qquad \qquad -\frac{\pi}{4} < \theta < \frac{3\pi}{4}$$

where *A* is a rational constant to be found.

(5)

-
24
щ
œ
1
~
S
_
1
_
\vdash
7
-
=
ш
10.00
\vdash
_
00
\leq
-
400
H-
-
=
$\overline{}$
\Box
$\overline{}$
-

Question 5 continued	
	(Total for Question 5 is 5 marks)

6.

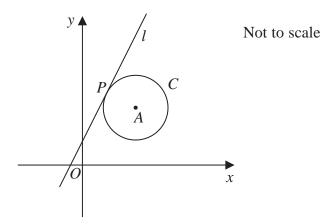


Figure 3

The circle C has centre A with coordinates (7, 5).

The line l, with equation y = 2x + 1, is the tangent to C at the point P, as shown in Figure 3.

(a) Show that an equation of the line PA is 2y + x = 17

(3)

(b) Find an equation for *C*.

(4)

The line with equation y = 2x + k, $k \ne 1$ is also a tangent to C.

(c) Find the value of the constant k.

(3)

796
ET
1
_
_
B
\vdash
F
1 1
P II II
444
ш
2011
\vdash
-00-00
-
_
1000
1
\vdash
5
9
9
9
8 N
9
8 N
8 N
ON OC
ON OC
8 N
ON OC

Question 6 continued

Question 6 continued

			٠	
ì	d	ė	ø	ø
4	7	ė	Ę	ė
1	Ļ	į		ĺ
1	ė	١	ė	ø
4	÷	4	÷	9
ì	e	e	۴	,
	7	7	7	ų
ì	r	ì	a	į.
1	Ŀ	ø	١,	1)
ì		Ė		Ė
3	Ŧ	ŧ	P	ú
ì			b	ė
Ì	Ŀ	_		_
1	r		7	7
ì	ė	ė	ė	i
4	d	ė	2	_
Ġ	Ξ	Ξ	Ξ	3
ł	î	Ī		ı
į		7		7
1	þ	÷	ė	ų
ŝ	i		ě	
4	à	6	ä	ø
1	Ŀ	a	Ē	ı
į	4	4	ė	
1	Ę	ξ	ξ	ä
J	ø	ę	-	7
1	Ĺ			
1	r	7	•	ij
i	P	ø	۹	k
٩	ķ	ė	ġ	p
1	÷	ŧ	3	ß
ì	ď		-	i
				٦
Ì	ľ		9	6
	3	2	e	
1	r	7	٩	١
1	4	Ŧ		ġ

Question 6 continued	
(Tatal	for Question 6 is 10 marks)
(Total	TOT VACCION O IS TO MAINS)

	7.	Given	that	k	\in	$\mathbb{Z}^{\scriptscriptstyle{+}}$
--	----	-------	------	---	-------	--------------------------------------

	r31	2.	
(a) show that		- dx	is independent of k ,
` '	\mathbf{J}_k	(3x-k)	1

(4)

(b) show that
$$\int_{k}^{2k} \frac{2}{(2x-k)^2} dx$$
 is inversely proportional to k .

(3)

Question 7 continued				

Question 7 continued				

			٠	
ì	d	ė	ø	ø
4	7	ė	Ę	ė
1	Ļ	į		ĺ
1	ė	١	ė	ø
4	÷	4	÷	9
ì	e	e	۴	,
	7	7	7	ų
ì	r	ì	a	į.
1	Ŀ	ø	١,	1)
ì		Ė		Ė
3	Ŧ	ŧ	P	ú
ì			b	ė
Ì	Ŀ	_		_
1	r		7	7
ì	ė	ė	ė	i
4	d	ė	2	_
Ġ	Ξ	Ξ	Ξ	3
ł	î	Ī		ı
į		7		7
1	þ	÷	ė	ų
ŝ	i		ě	
4	à	6	ä	ø
1	Ŀ	a	Ē	ı
į	4	4	ė	
1	Ę	ξ	ξ	ä
J	ø	ę	-	7
1	Ĺ			
1	r	7	•	ij
i	P	ø	۹	k
٩	ķ	ė	ġ	p
1	÷	ŧ	3	ß
ì	ď		-	i
				٦
Ì	ľ		9	6
	3	2	e	
1	r	7	٩	١
1	4	Ŧ		ġ

Question 7 continued			
(Te	otal for Question 7 is 7 marks)		

8. The depth of water, D metres, in a harbour on a particular day is modelled by the formula

$$D = 5 + 2\sin(30t)^{\circ}$$
 $0 \le t < 24$

where *t* is the number of hours after midnight.

A boat enters the harbour at 6:30 am and it takes 2 hours to load its cargo. The boat requires the depth of water to be at least 3.8 metres before it can leave the harbour.

(a) Find the depth of the water in the harbour when the boat enters the harbour.

(1)

(b) Find, to the nearest minute, the earliest time the boat can leave the harbour. (Solutions based entirely on graphical or numerical methods are not acceptable.)

(4)

Question 8 continued				
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			
(Total for Question 8 is 5 marks)	_			
(Total for Question 6 is 5 marks)	_			

9.

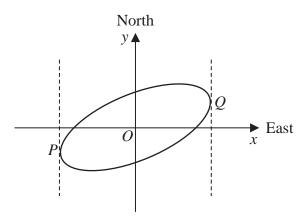


Figure 4

Figure 4 shows a sketch of the curve with equation $x^2 - 2xy + 3y^2 = 50$

(a) Show that
$$\frac{dy}{dx} = \frac{y - x}{3y - x}$$
 (4)

The curve is used to model the shape of a cycle track with both x and y measured in km.

The points P and Q represent points that are furthest west and furthest east of the origin O, as shown in Figure 4.

Using part (a),

(b) find the exact coordinates of the point P.

(5)

(c) Explain briefly how to find the coordinates of the point that is furthest north of the origin *O*. (You **do not** need to carry out this calculation).

(1)

-
SI.
200
ш
-
\mathbf{r}
-
-
S.
F (6)
V)
-
- 1
\vdash
_
==
200
ш
1
\vdash
III.
_
2
Principal Control
\leq
\geq
-
10.00
100
-
$\overline{}$
\leq
-
\Box
\sim
-
\mathbf{c}
_

Question 9 continued				

Question 9 continued				

	_	ż	d	
1				
1				
1				
j				
ì				
ł				
	Ĺ			
1				
1				
j				
1				
				i
1	ь	ė		
•	2		ú	ı
1				
1				
ì				
				٠
		_	4	
2	ø	ø	4	ĸ
1	r		7	
٦		ė	d	ø
	c		_	
4	ø	۰	9	h
1				١
1				

	Question 9 continued
(Total for Question 9 is 10 marks)	(Total for Question 9 is 10 marks)

10. The height above ground, H metres, of a passenger on a roller coaster can be modelled by the differential equation

$$\frac{\mathrm{d}H}{\mathrm{d}t} = \frac{H\cos(0.25t)}{40}$$

where *t* is the time, in seconds, from the start of the ride.

Given that the passenger is 5 m above the ground at the start of the ride,

(a) show that $H = 5e^{0.1\sin(0.25t)}$

(5)

(b) State the maximum height of the passenger above the ground.

(1)

The passenger reaches the maximum height, for the second time, T seconds after the start of the ride.

(c) Find the value of T.

(2)

			٠	
ì	d	ė	ø	ø
4	7	ė	Ę	ė
1	Ļ	į		ĺ
1	ė	١	ė	ø
4	÷	4	÷	9
ì	e	e	۴	,
	7	7	7	ų
ì	r	ì	a	į.
1	Ŀ	ø	١,	1)
ì		Ė		Ė
3	Ŧ	ŧ	P	ú
ì			b	ė
Ì	Ŀ	_		_
1	r		7	7
ì	ė	ė	ė	i
4	d	ė	2	_
Ġ	Ξ	Ξ	Ξ	3
ł	î	Ī		ı
į		7		7
1	þ	÷	ė	ų
ŝ	i		ě	
4	à	6	ä	ø
1	Ŀ	a	Ē	ı
į	4	4	ė	
1	Ę	ξ	ξ	ä
J	ø	ę	-	7
1	Ĺ			
1	r	7	•	ij
i	P	ø	۹	k
٩	ķ	ė	ġ	p
1	÷	ŧ	3	ß
ì	ď		-	i
				٦
Ì	ľ		9	6
	3	2	e	
1	r	7	٩	١
1	4	Ŧ		ġ

Question 10 continued

Question 10 continued	
	_

-	ø
9	ы
30.0	ī.
ы	ш
-	i
10	Ŀ
	٥
Æ	L
	7
10 1	ĸ.
v	u
=	
100	pp.
ы	Ŀ
	7
H	÷
σ.	
$\dot{=}$	÷
4	_
\equiv	Ξ
7	₹
PI	ΝĖ
Ш	ы
H	_
г	7
=	_
-//	ø
	6
M	6
4	=
100	≥.
÷.	
ы	-
15	ď.
ϵ	٦
-	ø
=	7
~	_
-	7
-	Ė.
Æ.	2)
.3	₹.
e.	٦
Ш	-

Question 10 continued				
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			
(Total for Question 10 is 8 marks)	_			

11. (a) Use binomial expansions to show that $\sqrt{\frac{1+4x}{1-x}} \approx 1 + \frac{5}{2}x - \frac{5}{8}x^2$ (6)

A student substitutes $x = \frac{1}{2}$ into both sides of the approximation shown in part (a) in an attempt to find an approximation to $\sqrt{6}$

- (b) Give a reason why the student **should not** use $x = \frac{1}{2}$ (1)
- (c) Substitute $x = \frac{1}{11}$ into

$$\sqrt{\frac{1+4x}{1-x}} = 1 + \frac{5}{2}x - \frac{5}{8}x^2$$

to obtain an approximation to $\sqrt{6}$. Give your answer as a fraction in its simplest form. (3)

-
SI.
200
ш
-
\mathbf{r}
-
-
S.
F (6)
V)
-
- 1
\vdash
_
==
200
ш
1
\vdash
III.
_
2
Principal Control
\leq
\geq
-
10.00
100
-
$\overline{}$
\leq
-
\Box
\sim
-
\mathbf{c}
_

Question 11 continued	

Question 11 continued	

	_	ż	d	
1				
1				
1				
j				
ì				
ł				
	Ĺ			
1				
1				
j				
1				
				i
1	ь	ė		
•	2		ú	ı
1				
1				
ì				
				٠
		_	4	
2	ø	ø	4	ĸ
1	r		7	
٦		ė	d	ø
	c		_	
4	ø	۰	9	h
1				١
1				

Question 11 continued	
(Total 4	or Question 11 is 10 mayles)
(10tal 1	or Question 11 is 10 marks)

12. The value, £V, of a vintage car t years after it was first valued on 1st January 2001, is modelled by the equation

 $V = Ap^t$ where A and p are constants

Given that the value of the car was £32000 on 1st January 2005 and £50000 on 1st January 2012

- (a) (i) find p to 4 decimal places,
 - (ii) show that A is approximately 24800

(4)

- (b) With reference to the model, interpret
 - (i) the value of the constant A,
 - (ii) the value of the constant p.

(2)

Using the model,

(c) find the year during which the value of the car first exceeds $\pounds 100\,000$

(4)

ì	ø	ė	۴	ø
٦	7	۹	b	ù
1	Ł			ı
č	Ξ		Ξ	2
1	Ξ		Ξ	:
Ĵ	Ξ	_	Ξ	ā
J		3	Ľ	
			r	9
4	ŕ.	d	R	h
ì	۳		4	ij
ŝ	Ξ	Ξ	Ξ	2
	7		_	:
3				Ī
ł	È		Ė	ı
J	۰	5	ġ	p
1		S	ė	
4	Ė		Ė	
٠				
ł	L		1	ı
î	L			-
1	r	۰		۰
1	ŧ		ŧ	ı
1	7	٧	۴	,
ã				۰
í	3		3	B
î	3		3	ģ
				-
Į	L	÷		i
	5		_	
ï	r	_	7	b
2	9	Ė	9	_
ľ	2	7	7	9
į	E	÷		į
	à		٤	
4	r		1	b
	3	Ħ	ď	
1	۲	7	٩	۱
ı				ij

Question 12 continued

Question 12 continued	

-	ø
9	ы
30.0	ī.
ы	ш
-	i
10	Ŀ
	٥
Æ	L
	7
10 1	ĸ.
v	u
=	
100	pp.
ы	Ŀ
	7
H	÷
σ.	
$\dot{=}$	÷
4	_
\equiv	Ξ
7	₹
PI	ΝĖ
Ш	ы
H	_
г	7
=	_
-//	ø
	6
M	6
4	=
100	≥.
÷.	
ы	-
15	ď.
ϵ	٦
-	ø
=	7
~	_
-	7
-	Ė.
Æ.	2)
.3	₹.
e.	٦
Ш	-

(Total for Question 12 is 10 marks)	Question 12 continued	
(Total for Question 12 is 10 marks)		
(Total for Question 12 is 10 marks)		
(Total for Question 12 is 10 marks)		
(Total for Question 12 is 10 marks)		
(Total for Question 12 is 10 marks)		
(Total for Question 12 is 10 marks)		
(Total for Question 12 is 10 marks)		
(Total for Question 12 is 10 marks)		
(Total for Question 12 is 10 marks)		
(Total for Question 12 is 10 marks)		
(Total for Question 12 is 10 marks)		
(Total for Question 12 is 10 marks)		
(Total for Question 12 is 10 marks)		
(Total for Question 12 is 10 marks)		
(Total for Question 12 is 10 marks)		
(Total for Question 12 is 10 marks)		
(Total for Question 12 is 10 marks)		
(Total for Question 12 is 10 marks)		
(Total for Question 12 is 10 marks)		
(Total for Question 12 is 10 marks)		
(Total for Question 12 is 10 marks)		
(Total for Question 12 is 10 marks)		
(Total for Question 12 is 10 marks)		
(Total for Question 12 is 10 marks)		
(Total for Question 12 is 10 marks)		
(Total for Question 12 is 10 marks)		
(Total for Question 12 is 10 marks)		
(Total for Question 12 is 10 marks)		
(Total for Question 12 is 10 marks)		
(Total for Question 12 is 10 marks)		
(Total for Question 12 is 10 marks)		
	(Total for Que	estion 12 is 10 marks)

13. Show that	$\int_0^2 2x \sqrt{x+2} \mathrm{d}x = \frac{32}{15} \Big(2 + \sqrt{2} \Big)$	
		(7)

4				
ì				
1				
ì				
٦				
Ì				
1				
ł				
1	ľ	۰	•	•
ļ	ľ			1
1				
1				
1	Ē		_	
1	Ċ			
1				
1				
1				
1				
1				
1 1 1 1 1 1				
1 1 1 1 1 1				
1 1 1 1 1 1				
1				
1				
1				
11111111				
11111111				
11111111				
11111111				
11111111				
1				
11111111				

Question 13 continued

			٠	
ì	d	ė	ø	ø
4	7	ė	Ę	ė
1	Ļ	į		ĺ
1	ė	١	ė	ø
4	÷	4	÷	9
ì	e	e	۴	,
	7	7	7	ų
ì	r	ì	a	į.
1	Ŀ	ø	١,	1)
ì		Ė		Ė
3	Ŧ	ŧ	P	ú
ì			b	ė
Ì	Ŀ	_		_
1	r		7	7
ì	ė	ė	ė	i
4	d	ė	2	_
Ġ	Ξ	Ξ	Ξ	3
ł	î	Ī		ı
į		7		7
1	þ	÷	ė	ų
ŝ	i		ě	
4	à	6	ä	ø
1	Ŀ	a	Ē	ı
į	4	4	ė	
1	Ę	ξ	ξ	ä
J	ø	ę	-	7
1	Ĺ			
1	r	7	•	ij
i	P	ø	۹	k
٩	ķ	ė	ġ	p
1	÷	ŧ	3	ß
ì	ď		-	i
				٦
Ì	ľ		9	6
	3	2	e	
1	r	7	٩	١
1	4	Ŧ		ġ

Question 13 continued	
	(Total for Question 13 is 7 marks)

14. A curve *C* has parametric equations

$$x = 3 + 2\sin t$$
, $y = 4 + 2\cos 2t$, $0 \le t < 2\pi$

(a) Show that all points on C satisfy $y = 6 - (x - 3)^2$

(2)

- (b) (i) Sketch the curve *C*.
 - (ii) Explain briefly why C does not include all points of $y = 6 (x 3)^2$, $x \in \mathbb{R}$ (3)

The line with equation x + y = k, where k is a constant, intersects C at two distinct points.

(c) State the range of values of k, writing your answer in set notation.

(5)

Question 14 continued

Question 14 continued	
	(Total for Question 14 is 10 marks)
	TOTAL FOR PAPER IS 100 MARKS

